Argonne'\

NATIONAL LABORATORY

DIY Parallel Data Analysis

I'm sure my wife
will appreciate all
the DIY I'm doing
around the house

for her!

e Tom Peterka
Image courtesy pigtimes.com

tpeterka@mcs.anl.gov

Dagstuhl Talk 6/17/13 Mathematics and Computer Science Division

Scientific Data Analysis Today

Big science = big data, and

* Big data analysis => big science resources
Data analysis is data intensive.

* Data intensity = data movement.
Parallel = data parallel (for us)

* Big data => data decomposition

* Task parallelism, thread parallelism, while important, are
not part of this work

Most analysis algorithms are not up to the challenge
* Either serial, or

¢ Communication and /O are scalability killers

Multiple

Definition of Data Analysis

* Any data transformation, or a network or transformations.
* Anything done to original data beyond its original generation.
* Can be visual, analytical, statistical, or data management.

— N

Exploration

MODEL

A
MODYEL
Source Exploration
MODEL

4

ODEL ,
Multiple

heterogeneous
eee collaborators

data
sources

oo,

A

Exploration

Example of a data flow network

et

Comes in Many Flavors

Statistical

Information entropy analysis of astrophysics

Topological Geometric

Morse-Smale Complex of combustion Voronoi tessellation of cosmology

You Have Two Choices to Parallelize Data Analysis

By hand With tools

Application Application

Analysis Algorithm Analysis Algorithm
Stochastic| Linear Algebra | Iterative |Nearest Neighbor q (> Stochastic| Linear Algebra | Iterative [Nearest Neighbor
Interface

OS / Runtime ‘

OS / Runtime

void ParallelAlgorithm() {

MPI_Send(); void ParallelAlgorithm() {
MPI_Recv(); LocalAlgorithm();

MPI_Barrier(); DIY _Merge blocks();

MPI_File_write(); DIY_File_write()
}

DIY

helps the user write data-parallel analysis algorithms by decomposing a
problem into blocks and communicating items between blocks.

Features Library
Parallel I/O to/from storage Written in C++ with C bindings
Domain decomposition Autoconf build system (configure, make, make install)
Network communication Lightweight: libdiy.a 800KB

Utilities Maintainable: ~15K lines of code, including examples

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt I/O Decomposition Communication

| | Read
Analysis Library Data Blocking Neighbor
ITL, Osuflow, Qhull, VTK Whrite .
| Results Assignment Global

DIY
|

-y Parallel Datatype Parallel
M Pl Utilities Creation

DIY usage and library organization

Nine Things That DIY Does

. Separate analysis ops from data ops

. Group data items into blocks

. Assign blocks to processes

. Group blocks into neighborhoods

. Support multiple multiple instances of 2, 3, and 4
Handle time

. Communicate between blocks in various ways

Read data and write results

I

2
3
4
5
6.
7
8.
9.

Integrate with other libraries and tools

R
"

()
9

o
t,/:

//

"("
NANANANA

INAVAANA

Two examples of 3 out of a total of 25 neighborhoods
8 processes 4 processes rocess

Data Movement Patterns

Analysis Communication

: : Homogeneous
Sort-Last Rendering Swap-Based Reduction Data

Regular _ Morse-Smale Complex Merge-Based Reduction Heterogeneous

Information Entropy Merge-Based Reduction Data

. Particle Tracin Neighborhood Exchange
Semi

Regular 7 Voronoi Tessellation Neighborhood Exchange

Irregular al Graph layout Send-Receive

Many different analysis operations share a small set of communication
patterns. These communication kernels together with supporting utilities for
decomposition and I/O can be encapsulated, optimized, and reused.

3 Communication Patterns

Swap-based
reduction

Merge-based
reduction

Different Neighborhood Communication Patterns

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).

How to enqueue items
for neighbor exchange

DIY offers several
options

Send to a particular
neighbor or neighbors,
send to all nearby

neighbors, send to all
neighbors

Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them

Send to only specific neighbors,
indicated in various ways

Send to all neighbors

- T1r/-1r==-1r= 7|
11

r

|
| 11
r—=—1r—=—=r
11
11

Send to all neighbors near :

enough to a target point - - -
Support for wraparound neighbors
(periodic boundary conditions)

R U R —

Interaction with Other Libraries

DIY by design doesn’t include input or output data models. Rather than re-
inventing them, it can import and export those models.

Import: Replicate model using DIY_Decomposed(), explicitly providing blocks and
neighbors to DIY

Export: Just use the other model API. DIY does not prevent you from making
other library calls.

Meshes

Native In

Regular grid PnetCDF
BoxLib N
AMR

Writing a DIY Program

Documentation
README for installation

User’s manual with description, examples
of custom datatypes, complete API
reference

Tutorial Examples

Block I/O: Reading data, writing analysis
results

Static: Merge-based, Swap-based reduction,
Neighborhood exchange

Time-varying: Neighborhood exchange
Spare thread: Simulation and analysis
overlap

MOAB: Unstructured mesh data model

VTK: Integrating DIY communication with
VTK filters

R: Integrating DIY communication with R
stats algorithms

Multimodel: multiple domains and
communicating between them

Initialize
|

Decompose domain
(regular grid &
postprocessing)

i

List decomposition
(irregular data or
in situ

Read data
from storage

Data exists in
memory

Local
analyze

Communicate

Merge Swap
Reduce | Reduce

Neighbor

. . L d
Write analysis el
to storage

User
[

' DIY
Finalize or user

Published Performance and Scalability

DIY
* Peterka,T., Ross, R, Kendall, W, Gyulassy, A., Pascucci,V., Shen, H.-WV, Lee, T.-Y., Chaudhuri,A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'I), IEEE Visualization Conference, Providence RI, 201 I.
* Peterka,T., Ross, R.:Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'| 2,Vienna, AT.

DIY applications
* Peterka, T, Ross, R., Nouanesengsey, B, Lee, T.-Y,, Shen, H.-W,, Kendall, W,, Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'I I,
Anchorage AK, May 201 I.
* Gyulassy,A., Peterka, T, Pascucci,V., Ross, R.:The Parallel Computation of Morse-Smale
Complexes. Proceedings of IPDPS'1 2, Shanghai, China, 2012.
* Nouanesengsy, B, Lee, T.-Y,, Lu, K., Shen, H.-WV,, Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT.
* Peterka,T., Kwan, ., Pope, A, Finkel, H., Heitmann, K., Habib, S.,Wang,]., Zagaris, G.: Meshing the
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT.
* Chaudhuri,A,, Lee-T.-Y,, Zhou, B.,Wang, C., Xu, T, Shen, H.-W,, Peterka, T., Chiang,Y.-).: Scalable
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'| 2, Seattle, WA.

Particle Tracing

Strong Scaling

-8 Criginal
=&~ Optimized
- - Perfect scaling

200 250

©
©
=
|_
L
o
l—
5
=
T
0
T
5
-
Ll

| | | | | |
1024 2048 4096 8192 16384 32768

Number of Processes

Particle tracing of '/4 million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms

Information Entropy

Strong Scaling

©w
QL
=
—_
2
)
2
c
=3
=
£
o
o
+
b
i
=
(o}
=
o
@)

| |
32 64 128 256 512 1024

Mumber of Processes

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.

Morse-Smale Complex

Strong Scaling

-~ Total time
- - Perfect scaling

©
®
E
'—
o
o
'—
5
=
I
|
o
T
35
-
I

8192 16384 32768
Number of Processes

Computation of Morse-Smale complex in | 1523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including 1/O.

In Situ Voronoi Tessellation

Strong Scaling

102473 particles
51273

25673

12873

Perfect scaling

“w
=
o)
£
S
=
O
£
=
c
o
=}
e}
@
%]
)
=

I I I T [
1024 2048 4096 8192 16384

Number of Processes

For 1283 particles, 41 % strong scaling for total tessellation time, including I/O;
comparable to simulation strong scaling.

Recap and Looking Ahead

Done: Benefits To Do: Research Directions

* Productivity Advanced decomposition
* Express complex algorithms flexibly .
* Multiple blocks per process

* Complete / partial reductions
» Neighbor inclusion and * Less synchronous, more overlap

with computation

Block groups

Improved communication algorithms

communication
Simplify existing tasks High-level communication operations
* Custom data type creation * Ghost cell exchange, kernel

* Compression convolution (stencil)
* Performance

* Published scalability
* Configurable algorithms

Load balancing

* Block overloading, dynamic
reassignment

Programming models

* MPI + X on Mira, Titan
Usability

* Improved API

NERGY

DIY Parallel Data Analysis

Argonne'\

NATIONAL LABORATORY

Acknowledgments:

Facilities
Argonne Leadership Computing Facility (ALCF)
Oak Ridge National Center for Computational Sciences (NCCS)

Funding
DOE SDMAYV Exascale Initiative

DOE Exascale Codesign Center
DOE SciDAC SDAV Institute

http://www.mcs.anl.gov/~tpeterka/software.html

https://svn.mcs.anl.gov/repos/diy/trunk

Tom Peterka
tpeterka@mcs.anl.gov

Dagstuhl Talk 6/17/13 Mathematics and Computer Science Division

